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Our Team and Collaborators

= Future Technologies Group = Support Scientific Computation
—  Sadaf Alam th rough
~  Richard Barrett — Performance Analysis
—  Nikhil Bhatia _
—  Jeff Kuehn —  System Evaluation
—  Collin McCurdy — Modeling
- Jlgren;g P’P']eredith —  HEC Algorithm/Software R&D
" Philip Roth % Experimental Computing Lab (ExCL)
—  Olaf Storaasli Examine new/emerging technologies
—  Jeffrey Vetter —  FPGAs
—  Weikuan Yu

— Optical processors
= Collaborators P P

—  Jacob Barhen - GPUs
—  Pat Worley — Array processors
—  Pratul Agarwal —  Multicore processors
— Hong Ong
—  Core universities (UT, GT, Duke, NCSU, -
) = System software: OS, performance
- ScDAC PERC Team tools, runtime systems
— DARPA HPCS Team
—  DoD HPCMP
—  Georgia Tech CSE Dept, CERCS
—  Vendors

— Many others...
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Motivation

= Iil(j)l}é predicts that Moore’s Law will be coming to an end in 2012-

— Recent performance gains at chip level are principally derived from
Moore’s Law

= Low sustained performance on important applications causing
HEC community to reconsider system designs

— System balance not tuned for specific HEC applications
= Infrastructure (power, cooling, space) impacting system design
— Tempers performance gains of conventional microprocessors

= Market trends drive vendors to favor issues other than
performance (laptop battery life, etc)

— Culture of “Good-enough computing” -- Economist

Intel's CTO: "Pentium PC May Need the Power of a
. Nuclear Reactor”
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Motivation (cont)

= New constraints define a new utility function

— Sustained performance, reliability, power, floorspace

= Current architectural trends

— Major vendors moving toward multicore architectures

= Commodity constraints on HEC driving a rebirth of
computer architecture
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Alternative Architectures Offer Different
Design Points

= GPUs = Physics and Al chips
= FPGAS Merimac Node
= Mulithreaded processors
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Investigating Diverse Architectures

Cray Xle, XD1, XT3 (Red Storm)
IBM BlueGene/L

IBM SP3, p655

SGI Altix

Intel Itanium, Xeon
IBM POWERS

ik

Cray X1,

B

"% IBM Federation

IBM Cell

FPGAs

GPUs

Optical processors
Multithreading

Array processors, etc. =

1400 MBIs 1400 MBIs
sustzined  sustained
payload payload

Processors-in-memory

4022323300000 00

more interesting!
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Evaluations are Application Grounded

Performance of the CAM3.1 Atmospheric Model

Finite Volume Dynamics, 361x576x26 benchmark
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GPUs - current technology with a twist
= What are they!?

— Graphics Processing Units

— Most “video cards” contain GPU, RAM
* Usually AGP / PCle cards
*Up to 512 MB RAM, though most contain less

— Accelerate common 3D graphics operations .

* Vertex transformations :
* Polygon rasterization —~—
= Architecture
— Vertex and Pixel (Fragment) stages
« implicit parallelism versexsesoar s T O R G O NS
« differing programmability T Se
— Poor support for scatter ops e et
— High internal bandwidth ETETETR TR TRTR TR TR TR R TR TR "R
— Example: NV 6800 GT I
+ 6 vertex pipelines GO

* |6 fragment pipelines
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GPUs - Motivation and Outlook

= Motivation = Small scale work in scientific apps
= High end consumer cards: — real-time Navier-Stokes

— Very high speeds Slml,f|atIOTIS .

— Low price (~$500) — particle simulations

— Improving faster than CPUs

— Mass market driven (gaming)
= Example:

— 60 GFLOPS, 16 pipes (4/04)

— 200 GFLOPS, 24 pipes (6/05)

— 400 GFLOPS, 48 pipes (1/06)

= A few recent results vs CPU

— 400x for static imagery geo-
registration

— 60x for video geo-registration

— 100x for convolution
* e.g. sharpen, blur, edge detection

— 26x for hyperspectal covariance
— | 7x for discrete cosine transform

— 4x for singular value
decomposition
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Recent and Ongoing Evaluations

=

Cray X1

P.A. Agarwal, R.A. Alexander et al., “Cray X1 Evaluation Status Report,” ORNL, Oak Ridge, TN,
Technical Report ORNL/TM-2004/13, 2004.

— T.H. Dunigan, Jr., M.R. Fahey et al., “Early Evaluation of the Cray X1,” Proc. ACM/IEEE Conference
High Performance Networking and Compuiting (SC03), 2003.

— T.H. Dunigan, Jr., J.S. Vetter et al., “Performance Evaluation of the Cray X1 Distributed Shared Memory
Architecture,” IEEE Micro, 25(1):30-40, 2005.

Cray XDl

— 12\/(1)6{5 Faher2 S.R. Alam et al., “Early Evaluation of the Cray XD1,” Proc. Cray User Group Meeting,
, pp- I2.

Cray XT3

— J.S. Vetter, S. R. Alam et al., “Early Evaluation of the Cray XT3 at ORNL,” Proc. Cray User Group
Meeting, 2005, pp. 12.

SGI Altix

—  T.H. Dunigan, Jr., J.S. Vetter, and P.H. Worley, “Performance Evaluation of the SGI Altix 3700, Proc.
International Conf. Parallel Processing (ICPP), 2005.

SRC

—  M.C. Smith, J.S. Vetter, and X. Lianlg, ¢
Reconfl%lrable Computer: Methodolog
(RAW),2005.

‘Acceleratinlg Scientific Applications with the SRC-6
ies and Analysis,” Proc. Reconfigurable Architectures Workshop

Underway
—  XDI1 FPGAs
—  ClearSpeed
—  EnLight
—  Multicore processors: AMD, Intel
—  IBM BlueGene/L
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Programming Challenges

= Portability
—  Unique software stack and Heh Nila HohRerfomance
programming model for each g Hohlewd Langueges
alternative N 0 Python
= Programmer Productivity U’g
= Code Maintenance 8> UPCCAF
o0
= Improving sustained performance is g % y
equivalent to improving the application a5
to architecture mapping m OFatran
= Data Management NRQ ?I\.\,,R
— Bandwidth, latency challenges Low Assently
VHL
N CO—St These systems must add measurable Low Hoh
value Rarformmance

Source: DARPA HPCS Productivity Team

G S
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Common Programming Models

=  Explicit message passing -- e.g. MPI
=  Explicit one sided communication -- e.g. SHMEM.
=  Compiler directives -- e.g. OpenMP
=  Explicit threading models -- e.g. pthreads, sproc
=  Here to stay... for now
=  But can we do better?
—  l.e. provide code developers with better ways (faster
development, strong performance)
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Emerging Programming Models

= Partitioned Global Address Space languages.

— Small set of extensions to existing languages enable parallelism
designed to create a global address space, even on machines that
don’t physically have one.

= CoArray Fortran (CAF):
- SPMD

—  User must deal with data distribution.

—  Fortran2008 inclusion.

= Unified Parallel C (UPC)

—  C like model, with data distribution (mostly) hidden from user.

— Random memory access model (NSA driven)

= Alternates: “Global Arrays” (PNNL), etc.
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Next Generation Programming Models

=  DARPA HPCS parallel processing languages (2010).
— independent of architecture program.
=  Chapel (Cray, with JPC/CalTech)
- High level multithreaded model
— supports data, task, and nested parallelism.
=  XI10 (IBM)
- OO, Java-like.
=  Fortress (Sun)
— “Java for scientists on peta-scale architectures.” -- Guy Steele (co-author of Java)
=  Other players:
—  Titanium: Java-based, SPMD (UC Berkeley)
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Application Impact - Fortran CoArrays
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ORNL has Major Efforts Focusing on Grand Challenge
Scientific Applications

Genomes

SciDAC
to Life

Astrophysics
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Case Study of a Life Sciences Application
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Computational Biology using
Molecular Modeling

= Wide community of biologist are interested in
the multi-scale modeling of biomolecules

= Structure — Dynamics — Function
= Spans multiple scales of time and space

= Multi-scale modeling of a real system may require
I peta-flopls for an entire year!

= Scaling of existing software packages and
algorithms is limited

Joint work between Sadaf Alam and Comp
Biologist Pratul Agarwal at ORNL.
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Computer Simulations
(Molecular Dynamics)

= Mathematical (potential) function
i~ > > |4 o |4 Bl a4
Vi(r )—ZKl(l_leq) T ZKQ(Q—Q%[) T Z _(1+COS[1¢_7])+ZZ 2 6 |7
bonds angles torsions2 i=l j=i+l }/;'j };'j 8;']'

— Bond stretching, angle bending, angle torsion and the non-
bond term

— Degree of freedom = 3N-6, where N=number of atoms
— Number of points to sample=M3N-¢. M >> |0
— Packages: Amber, GROMACS, GAMESS, LAMMPS, NAMD
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AMBER Performance Analysis

= ORNL Computational biologists were using AMBER for
their simulations, but its scalability was limited to about
|28 processors

= Used several tools to study AMBER’s performance
— MPIP, PAPI, Xprofiler, GPROF

= Modified communication operations to improve scaling

= |dentified computational kernels for acceleration with
FPGAs
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AMBER Profiling on Cray XT3 and IBM

BlueGene/L

@ other

® CRD distribute time
O Verlet update tim

B Shake time

O FRC Collect time

m Bond/Angle/Dihedra
O Calc gb off-diag

O Calc gb diag

@ Communicate gb radi
@ Calc gb radii
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m CROD distribute time
O Verlet update tim

B Shake time

@ FRC Collect time

® Bond/Angle/Dihedra
O Calc gb off-diag
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@ Communicate gb radi
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p—
SR B e
I B Y R ) B S B 7-1
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Number of processors

XT3

Bottlenecks: Distribute,

Collect and I/0 times
Expected to improve

significantly as system matures

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

BGL

Bottlenecks: Distribute and
collect times
Computation and

communication times can

improve with tool chain

-

UT-BATTELLE




Amber Control Flow for RUB
(RuBisCO with Generalized Born method)

RunMD Main method of Sander

Shake Update CRD distribute

Non-bond Bnd FRC Collect

oooo

Generalized Born Cost increases with
Short_ene: mapped to FPGA

Divided and distributed in MPI model number of processors

GB Computation  GB Communication
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TRC Lol 0 o
CRD Dbl e

TR Lol |
CRD Dbl e

RUB Scaling

Will improve as
system software
matures

2 4 8 16 32 64 128 256 512 1024 2048

Number of processors

Rubisco with Generalized Born solvation method (ORNLtest3). Note that on BGL only results

from 64, 128, 256, 512 nodes run are shown. /\<-\
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Mapping Amber Kernel to FPGAs

1 1[n]
12 [omer]

1 4| runmd
73.14% el
1000 5| force | 32 | fastwt_mp_quick3 45 ake 1000

ew_recip.f 1 0 0 0

|

3.39%

I=

1000+

2000

1000 JLco_pmesh_kspace "
1 70 1 > ] ,
90 | fft_forwardrc r scalar_sumrc_orthog I | 14 1819248
I
1 17 | fradorc 19 000 1000
471168 1001 s 70674000
ew_fitf 128 01 ew_fit.f

1

24 | 196 | pub_fftf

22 8320000 3
i P E—

20864000 20864000

11.22%

passb2.f
28| passb2 409L00 jac Amber8 benchmark:

List time (% of nonbond) = 4.72 (5.19)

Direct Ewald time = 70.82

Recip Ewald time = 14.76

Total Ewald time (% of nonbond)= 86.23 (94.81)

FFT time (% of RW{ZQ\
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AMBER Summary

= Performance analysis identified communication
components as limiting scalability

= Improved by code modifications

= Amber scaling was limited to 128 nodes but now we

have run experiments on 1024 nodes on Bluegene/L and
on 2048 nodes on Cray XT3

=> Achieved close to order of a nano-second/day on early
evaluation stage supercomputing systems

= Mapping compute intensive kernel to SRC MapStation
(a reconfigurable computing system)
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Summary

= We are analyzing HPCS applications to help understand current
and future requirements
= Generating empirical Sequoia traces from large scale experiments

— Developed trace analysis tools to help understand communication scaling

= Developing toolkit that we can distribute that will allow

— Creation of symbolic models that can be evaluated in traditional
environments like MATLAB or Python

— Projections to larger scale

— Sensitivity analysis

— Allows users to model and validate their applications
— Adding capabilities to allow time transformation

G S
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